

1

ImageJ Macro Language

Programmer’s Reference Guide v1.45f

Jérôme Mutterer
*
 and Wayne Rasband, compiled from:

ImageJ website: http://imagej.nih.gov/ij

Fiji Wiki: http://pacific.mpi-cbg.de/wiki/index.php/Fiji

ImageJ Documentation Wiki: http://imagejdocu.tudor.lu

ABSTRACT

A scripting language is a specialized programming language that allows a program to be controlled. The ImageJ Macro

language (IJM) is a scripting language built into ImageJ that allows controlling many aspects of ImageJ. Programs

written in the IJM, or macros, can be used to perform sequences of actions in a fashion expressed by the program’s

design. Like other programming languages, the IJM has basic structures that can be used for expressing algorithms.

Those include variables, control structures (conditional or looping statements) and user-defined functions. In addition,

the IJM provides access to all ImageJ functions available from the graphical user interface menu commands and to a

large number of built-in functions targeting the different objects used in ImageJ (images and image windows, regions of

interest, the results table, plots, image overlays, etc.). With some easy design rules, user plugins can also be used from

the macro language, or can even add new functions to it.

Keywords: Scripting, Macro language programming

* E-mail: mutterer@ibmp.fr

CONTENT

1. Introduction.. 2
2. "Hello World" Example ... 2
3. Recording Macros with the command Recorder .. 3
4. Macro Sets ... 3
5. Keyboard Shortcuts.. 4
6. Tool Macros ... 5

6.1 Image Tools.. 5
6.2 Image Tools Options Dialogs... 6
6.3 Action Tools... 6
6.4 Menu Tools .. 7
6.5 Tool Sets .. 7
6.6 Tool Icons .. 8

7. Image Popup Menu (right-click) Menu.. 9
8. Language elements... 10

8.1 Variables .. 10
8.2 Operators.. 11
8.3 Conditional Statements (if/else) ... 12
8.4 Looping Statements (for, while and do...while) ... 13

8.4.1 “for” loops... 13
8.4.2 “while” loops... 13
8.4.3 “do...while” loops.. 14

2

8.5 User-defined Functions .. 14
9. Working with Strings ... 15

9.1 String functions .. 15
9.2 String operators .. 15
9.3 Strings as arguments to built-in commands ... 15

10. Using a custom function library... 16
11. Designing macro-aware plugins... 17

11.1 Using ImageJ’s ij.gui.GenericDialog class .. 17
11.2 Using calls to public static methods... 18

12. Extending the Macro Language ... 18
12.1 Using Extensions on the macro side... 18
12.2 Writing a Macro Extension Java plugin ... 18
12.3 Example using the LSM_Toolbox.jar macro extensions.. 19
12.4 Example using the serial_ext.jar macro extensions.. 19

13. Running Macros from the Command Line... 20
13.1 ImageJ command line options.. 20

14. Debugging Macros ... 21
15. A-Z list of all built-in Macro Functions ... 22

1. INTRODUCTION

A macro is a simple program that automates a series of ImageJ commands. The easiest way to create a macro is to record

a series of commands using the command recorder (Plugins>Macros>Record…). A macro is saved as a text file and

executed by selecting a menu command, by pressing a key or by clicking on an icon in the ImageJ toolbar.

There are more than 400 example macros on the ImageJ Web site (http://imagej.nih.gov/ij/macros/). To try one, open

it in a browser window, copy it to the clipboard (crtl-a, ctrl-c), switch to ImageJ, open an editor window (ctrl-shift-n),

paste (ctrl-v), then run it using the editor's Macros>Run Macro command (ctrl-r). Most of the example macros are also

available in the macros folder, inside the ImageJ folder.

2. "HELLO WORLD" EXAMPLE

As an example, we will create, run and install a one line Hello World macro. First, open an editor window using

Plugins>New>Macro (or press shift-n). In the editor window, enter the following line:

 print("Hello world");

To test the macro, use the editor's Macros>Run Macro command (or press ctrl-r). To save it, use the editor's

File>Save As command. In the Save As dialog box, enter "Hello_World.txt" as file name, then click "Save". The macro

will be automatically i-nstalled as a "Hello World" command in the Plugins menu when you restart ImageJ, assuming the

file name has an underscore in it and the macro was saved in the plugins folder or a subfolder. You can run this macro by

pressing a single key by creating a shortcut using Plugins>Shortcuts>Create Shortcut.

To re-open a macro, use the File>Open or Plugins>Macros>Edit commands, or drag and drop it on the "ImageJ"

window.

3

3. RECORDING MACROS WITH THE COMMAND RECORDER

Simple macros can be generated using the command recorder (Plugins>Macros>Record). For example, this macro,

which measures and labels a selection,

is generated when you use the Analyze>Measure and Analyze>Label commands with the recorder running. Enter

"Measure_And_Label.txt" in the Name field, click the “Create” button and save this macro in the plugins folder, or a

subfolder. Restart ImageJ and there will be a new "Measure And Label" command in the Plugins menu. Use the

Plugins>Shortcuts>Create Shortcut command to assign this new command a keyboard shortcut.

4. MACRO SETS

A macro file can contain more than one macro, with each macro declared using the macro keyword.

 macro "Macro 1" {

 print("This is Macro 1");

 }

 macro "Macro 2" {

 print("This is Macro 2");

 }

In this example, two macros, "Macro 1" and "Macro 2", are defined. To test these macros, select them, Copy (ctrl-c),

switch to ImageJ, open an editor window (ctrl-shift-n), Paste (ctrl-v), select the editor's Macros>Install Macros

command, then selectMacros>Macro 1 to run the first macro or Macros>Macros 2 to run the second.

Macros in a macro set can communicate with each other using global variables. In the following example, the two

macros share the ‘s’ variable:

 var s = "a string";

 macro "Enter String..." {

 s = getString("Enter a String:", s);

 }

4

 macro "Print String" {

 print("This is Macro 2");

 }

Use the editor's File>Save As command to create a macro file containing these two macros. Name it something like

"MyMacros.txt" and save it in the macros folder inside the ImageJ folder. (Note that the ".txt extension is required.)

Then, to install the macros in the Plugins>Macros submenu, use the Plugins>Macros>Install command and select

"MyMacros.txt" in the file open dialog. Change the name to "StartupMacros.txt" and ImageJ will automatically install

the macros when it starts up.

5. KEYBOARD SHORTCUTS

A macro in a macro set can be assigned a keyboard shortcut by listing the shortcut in brackets after the macro name.

 macro "Macro 1 [a]" {

 print("The user pressed 'a'");

 }

 macro "Macro 2 [1]" {

 print("The user pressed '1'");

 }

In this example, pressing 'a' runs the first macro and pressing '1' runs the second. These shortcuts duplicate the shortcuts

for Edit>Selection>Select All and Analyze>Gels>Select First Lane so you now have to hold down control (command on

the Mac) to use the keyboard shortcuts for these commands.

Note that keyboard shortcuts will not work unless the macros are installed and the "ImageJ" window, or an image

window, is the active (front) window and has keyboard focus. You install macros using the macro editor's

Macros>Install Macros command or the Plugins>Macros>Install command. Install the two macros in the above

example and you will see that the commands:

 Macro 1 [a]

 Macro 2 [1]

get added to Plugins>Macros submenu. Save these macros in a file named "StartupMacros.txt" in the macros folder and

ImageJ will automatically install them when it starts up.

Function keys ([f1], [f2]...[f12]) and numeric keypad keys ([n0], [n1]..[n9], [n/], [n*], [n-], [n+] or [n.]) can also be used

for shortcuts. ImageJ will display an error message if a function key shortcut duplicates a shortcut used by a plugin.

Numeric keypad shortcuts (available in ImageJ 1.33g or later) are only used by macros so duplicates are not possible.

Note that on PCs, numeric keypad shortcuts only work when the Num Lock light is on. A more extensive example

(KeyboardShortcuts.txt) is available from the example macros on the website.

5

6. TOOL MACROS

You can define macros that create tools that get added to the ImageJ toolbar. There are three types of macro tools: image

tools, action tools and menu tools. The three types can be combined to create a tool set. Tool sets can be added to the

ImageJ toolbar as needed by clicking on the >> icon in the toolbar.

6.1 Image Tools

An image tool executes when the user clicks on the image with that tool. The macro that defines it must have a name

that ends in "Tool - xxxx", where "xxxx" is hexadecimal code (described below) that defines the tool's icon. Here is an

example image tool that displays the coordinates each time the user clicks on the image:

 macro "Sample Tool - C0a0L18f8L818f" {

 getCursorLoc(x, y, z, flags);

 print("Sample: "+x+" "+y);

 }

To install this tool, open an editor window (Plugins>Macros>New), paste in the macro, then use the editor's

Macros>Install Macros command. Put this macro in a file named "StartupMacros.txt" in the macros folder and it will

automatically be installed when ImageJ starts up. A macro file can contain up to eight tool macros and any number of

non-tool macros. Macro files must have a ".txt" or "ijm" extension.

6

6.2 Image Tools Options Dialogs

A tool can display a configuration dialog box when the user double clicks on it. To set this up, add a macro that has

the same name as the tool, but with " Options" added, and that macro will be called each time the user double clicks on

the tool icon. In this example, the getNumber dialog is displayed when the users double clicks on the circle tool icon.

 var radius = 20;

 macro "Circle Tool - C00cO11cc" {

 getCursorLoc(x, y, z, flags);

 makeOval(x-radius, y-radius, radius*2, radius*2);

 }

 macro "Circle Tool Options" {

 radius = getNumber("Radius: ", radius);

 }

6.3 Action Tools

Tool macros with names ending in "Action Tool" perform an action when you click on their icon in the toolbar. In

this example, the "About ImageJ" window is displayed when the user clicks on the tool icon (a question mark).

 macro "About ImageJ Action Tool - C059T3e16?" {

 doCommand("About ImageJ...");

 }

Note that action tool commands that display a dialog box may not run correctly if they are invoked using the run()

function. More examples are available at rsb.info.nih.gov/ij/macros/tools/ or in the ImageJ/macros/tools folder.

7

6.4 Menu Tools

You can use the newMenu function to add menus to the toolbar. The Toolbar Menus macro demonstrates how to

do this. You can also customize the contextual menu that appears when you right click on an image. The following

macro demonstrates how to do this.

var sCmds = newMenu("Example Menu Tool",

newArray("Image...", "Add Noise", "-", "My function"));

 macro "Example Menu Tool - C037T1d16M" {

 cmd = getArgument();

 if (cmd=="My function") {

 print ("My function");

 exit;

 }

 if (cmd!="-") run(cmd);

 }

6.5 Tool Sets

A macro file can contain up to eight macro tools, along with any number of ordinary macros. A macro file (macro

set) that contains macro tools is called a tool set. Save a tool set in the ImageJ/macros/toolsets folder and it will appear in

>> menu at the right end of the toolbar. Select the tool set from the >> menu and the tools contained in it will be

installed the tool bar. Restore the default tool set by selecting "Startup Macos" from the >>menu. The /ij/macros/toolsets

folder on the ImageJ website contains several example tool sets.

8

6.6 Tool Icons

Tool macro icons are defined using a simple and compact instruction set consisting of a one letter commands

followed by two or more lower case hex digits.

Command Description

Crgb set color

Bxy set base location (default is (0,0))

Rxywh draw rectangle

Fxywh draw filled rectangle

Oxywh draw oval

oxywh draw filled oval

Lxyxy draw line

Dxy draw dot (1.32g or later)

Pxyxy...xy0 draw polyline

Txyssc draw character

Where x (x coordinate), y (y coodinate), w (width), h (height), r (red), g (green) and b (blue) are lower case hex digits

that specify a values in the range 0-15. When drawing a character (T), ss is the decimal font size in points (e.g., 14) and c

is an ASCII character.

Example:

 macro "BlueS Tool - C00fT0f18S" {

 print ("you clicked in the image");

 }

It’s fun to design tool icons using this simple instruction set, but you might also try the

Image_To_Tool_Icon.txt macro from the ImageJ website that will convert any 8-bit color 16x16 pixel image into

the corresponding tool icon string.

9

7. IMAGE POPUP MENU (RIGHT-CLICK) MENU

The menu that is displayed when a user right-clicks (or ctrl-clicks) on an image window can be customized through

installation of the "Popup Menu" macro. Any menu has a name and a list of menu items. The

newMenu(name,items) macro function allows creation of a new menu. This menu passes the choosen item

as a simple string to the "Popup Menu" macro. From this point you can decide what to do, according to what item

was choosen.

var pmCmds = newMenu("Popup Menu",

newArray("Help...", "Rename...", "Duplicate...", "Original Scale", "Paste

Control...", "-", "Record...", "Capture Screen ", "Monitor Memory...", "Startup

Macros...", "Search...", "-", "Find Maxima..."));

macro "Popup Menu" {

 cmd = getArgument();

 if (cmd=="Help...")

 showMessage("About Popup Menu",

 "To customize this menu, edit the line that starts with\n"+

 "\"var pmCmds\" in ImageJ/macros/StartupMacros.txt.");

 else

 run(cmd);

}

10

8. LANGUAGE ELEMENTS

8.1 Variables

The ImageJ macro language is mostly "typeless". Variables do not need to be declared and do not have explicit data

types. They are automatically initialized when used in an assignment statement. A variable can contain a number, a

string or an array. In fact, the same variable can be any of these at different times. Numbers are stored in 64-bit double-

precision floating point format. Variable names are case-sensitive. "Name" and "name" are different variables.

In the following example, a number, a string and an array are assigned to the same variable.

 v = 1.23;

 print(v);

 v = "a string";

 print(v);

 v = newArray(10, 20, 50);

 for (i=0; i<v.length; i++) print(v[i]);

You can run this code by selecting it, copying it to the clipboard (ctrl-C), switching to ImageJ, opening an editor window

(Edit>New), pasting (ctrl-V), then pressing ctrl-R. (Note: on the Mac, use the apple key instead of the control key.)

Boolean values are represented with numbers 1 (TRUE) and 0 (FALSE); boolean values can be assigned to variables

like in the following example:

x=5<7;

y=false;

z=true;

print (x,y,z); // will output 1 0 1 to the log window

Global variables should be declared before the macros that use them using the 'var' statement. For example:

 var x=1;

 macro "Macro1..." {

 x = getNumber("x:", x);

 }

 macro "Macro2" {

 print("x="+x);

 }

The 'var' statement should not be used inside macro or function code blocks. Using 'var' in a macro or function may

cause it to fail.

11

8.2 Operators

The ImageJ macro language supports almost all of the standard Java operators but with fewer precedence levels.

Operator Precedence Description

++ 1 pre or post increment

-- 1 pre or post decrement

- 1 unary minus

! 1 boolean complement

~ 1 bitwise complement

* 2 multiplication

/ 2 division

% 2 remainder

& 2 bitwise AND

| 2 bitwise OR

^ 2 bitwise XOR

<<, >> 2 left shift, right shift

+ 3 addition or string concatenation

-- 3 subtraction

<, <= 4 less than, less than or equal

>, >= 4 greater than, greater than or equal

 == , != 4 equal, not equal

&& 5 boolean AND

|| 5 boolean OR

 = 6 assignment

+=, -=, *=, /= 6 assignment with operation

12

8.3 Conditional Statements (if/else)

The if statement conditionally executes other statements depending on the value of a boolean expression. It has the form:

 if (condition) {

 statement(s)

 }

The condition is evaluated. If it is true, the code block is executed, otherwise it is skipped. If at least one image is open,

this example prints the title of the active image, otherwise it does nothing.

 if (nImages>0) {

 title = getTitle();

 print("title: " + title);

 }

An optional else statement can be included with the if statement:

 if (condition) {

 statement(s)

 } else {

 statement(s)

 }

In this case, the code block after the else is executed if the condition is false. If no images are open, this example prints

"No images are open", otherwise it prints the title of the active image.

 if (nImages==0)

 print("No images are open");

 else

 print("The image title is " + getTitle);

Note that the "= =" operator is used for comparisons and the "=" operator is used for assignments. The braces are omitted

in this example since they are not required for code blocks containing a single statement.

The macro language does not have a switch statement but it can be simulated using if/else statements. Here is an

example:

 type = selectionType();

 if (type==-1)

 print("no selection");

 else if ((type>=0 && type<=4) || type==9)

 print("area selection");

 else if (type==10)

 print("point selection");

 else

 print("line selection");

13

8.4 Looping Statements (for, while and do...while)

Looping statements are used to repeatedly run a block of code. The ImageJ macro language has three looping statements:

1. for - runs a block of code a specified number of times

2. while - repeatedly runs a block of code while a condition is true

3. do...while - runs a block of code once then repeats while a condition is true

8.4.1 “for” loops

The for statement has the form:

 for (initialization; condition; increment) {

 statement(s)

 }

The initialization is a statement that runs once at the beginning of the loop. The condition is evaluated at top of each

iteration of the loop and the loop terminates when it evaluates to false. Finally, increment is a statement that runs after

each iteration through the loop.

In this example, a for loop is used to print the values 0, 10, 20...90.

 for (i=0; i<10; i++) {

 j = 10*i;

 print(j);

 }

The braces can be omitted if there is only one statement in the loop.

 for (i=0; i<=90; i+=10)

 print(i);

8.4.2 “while” loops

The while statement has the form:

 while (condition) {

 statement(s)

 }

First, the condition is evaluated. If it is true, the code block is executed and the while statement continues testing the

condition and executing the code block until the condition becomes false.

In this example, a while loop is used to print the values 0, 10, 20...90.

 i = 0;

 while (i<=90) {

 print(i);

 i = i + 10;

 }

14

8.4.3 “do...while” loops

The do...while statement has the form:

 do {

 statement(s)

 } while (condition);

Instead of evaluating the condition at the top of the loop, do-while evaluates it at the bottom. Thus the code block is

always executed at least once.

In this example, a do...while loop is used to print the values 0, 10, 20...90.

 i = 0;

 do {

 print(i);

 i = i + 10;

 } while (i<=90);

8.5 User-defined Functions

A function is a callable block of code that can be passed values and can return a value. The ImageJ macro language has

two kinds of functions: built-in and user-defined. A user-defined function has the form:

 function myFunction(arg1, arg2. arg3) {

 statement(s)

 }

Functions can use the return statement to return a value.

 function sum(a, b) {

 return a + b;

 }

The number of arguments given when calling a function must correspond to the number of arguments in the function

definition. The sum() function has two arguments so it must called with two arguments.

 print(sum(1, 2));

A function definition with no arguments must include the parentheses

 function hello() {

 print("Hello");

 }

and, unlike built-in functions, must be called with parentheses. (If you do not want to run into troubles, always use

parentheses, including for built-in functions).

 hello();

Basic data types (strings and numbers) are passed to a function by value; arrays are passed by reference.

15

9. WORKING WITH STRINGS

Strings are important objects to work with in the ImageJ macro language. They are used to handle file names and file

paths, window titles and user interaction messages, but also to feed arguments to built-in commands.

9.1 String functions

Use the indexOf() function to test to see if one string is contained in another. Use the startsWith() and

endsWith() functions to see if a string starts with or ends with another string. Use the substring() function to

extract a portion of string. Use the lengthOf() function to determine the length of a string. See also the split(),

toLowerCase(), to UpperCase(), d2s() functions.

9.2 String operators

Use the "==", "!=", ">" and "<" operators to compare strings. Comparisons are case-insensitive. For example, the

following code display true.

 ans = "Yes";

 if (ans=="yes")

 print ("true");

 else

 print("false");

Use the “+” operator for string concatenation, i.e. for assembling string portions. Strings can be concatenated with other

strings, or with other data types (Booleans that are 0s or 1s, and numbers)

 a=”width=”;

 b=200;

 print(a+b)

will produce the following output to the Log window:

 width=200

9.3 Strings as arguments to built-in commands

Let’s record a call to the Image>Adjust>Canvas Size… menu item.

Enter a width of 600, height of 412, choose “Center” from the drop-down list and check the “Zero fill” checkbox.

After pressing OK, this is what gets recorded by the command recorder :

run("Canvas Size...", "width=600 height=412 position=Center zero");

The run function has two string arguments in this case:

"Canvas Size..." is the name of the command to be run.

"width=600 height=412 position=Center zero" is the argument string.

The arguments string is a single string in which all arguments are grouped, separated by space characters, and given

either in the form of keyword=value pairs for input fields or choice lists, or as simple keyword for checkboxes.

In our example, width, height and position are passed as keyword=value pairs, and the “zero” keyword is found,

because the “Zero fill” checkbox was checked.

16

10. USING A CUSTOM FUNCTION LIBRARY

After you have started writing a number of macros, you'll realize that you keep using the same user-defined functions

over and over. To answer a common question, there's currently no way of including a different file in tha current macro,

i.e., there is no equivalent to include statement found in other languages.

However, those functions that you want to be available from all macros can be included in special macro that is

appended to any executed macro. This special macro must be available from the following location:
ImageJ/macros/Library.txt .

In short, the ImageJ/macros/Library.txt macro is appended to any executed or installed macro.

 Example : defining a dispose(title) function that closes windows by title.

Add this code to ImageJ/macros/Library.txt

 // My functions library

 function dispose(title) {

 selectWindow(title) ;

 run ("Close") ;

 }

Now, any function defined in Library.txt can be used in any other macro :

 // a new macro

 print("Testing the new dispose(title) function") ;

 wait(2000) ;

 dipose("Log") ;

Warning : Remember to distribute the Library.txt file together with your macros.

17

11. DESIGNING MACRO-AWARE PLUGINS

Not everything can or should be done using the macro language. If you need access to special java library, want to make

intensive computations, or work with image objects that you never intent to display, or if your feel more comfortable

using the java language, you might want or need to create new plugins. Here are basic rules you can follow to have your

plugins easily communicate with macros.

11.1 Using ImageJ’s ij.gui.GenericDialog class

Using the GenericDialog class will enable your plugin to be easily recorded by the built-in command recorder.

import ij.*;

import ij.plugin.*;

import ij.gui.*;

public class Generic_Dialog_Example implements PlugIn {

static String title="Example";

static int width=512,height=512;

public void run(String arg) {

GenericDialog gd = new GenericDialog("New Image");

gd.addStringField("Title: ", title);

gd.addNumericField("Width: ", width, 0);

gd.addNumericField("Height: ", height, 0);

gd.showDialog();

if (gd.wasCanceled()) return;

title = gd.getNextString();

width = (int)gd.getNextNumber();

height = (int)gd.getNextNumber();

IJ.newImage(title, "8-bit", width, height, 1);

}

}

Compile and run this plugin, then Refresh ImageJ Menus to load the new “Generic Dialog Example“ command,

and try it with the command recorder running. The fields used in the GenericDialog will be properly caught, and the call

to new plugin is recorded as:

run("Generic Dialog Example", "title=Example width=512 height=512");

Please note that to work properly with macros, the first word of each component label in the GenericDialog must be

unique. If this is not the case, add e.g. underscores to the labels, which will be converted to spaces when the dialog is

displayed. For example, change the checkbox labels "Show Quality" and "Show Residue" to "Show_Quality" and

"Show_Residue", so that you end up with only unique field identifiers.

18

11.2 Using calls to public static methods

If you do not want or can not use the GenericDialog class for input for some reason, you can still make your code

scriptable by providing static methods with String parameters, that can be called via the call() macro function.

In this case, nothing will automatically be caught by the command recorder. Would you want your plugin to be

recordable, you can directly log a suitable string to the recorder, like this:

if (Recorder.record) {

String command = "call('My_Plugin.My_static_method', 'myArgument');";

 Recorder.recordString(command);

}

12. EXTENDING THE MACRO LANGUAGE

There are two ways to add functions implemented as Java code to the macro language. One is to use the call function to

call static methods defined in a plugin. The other is to write a plugin that implements the MacroExtension interface. The

ImpProps plugin demonstrates how to use the call function to get and set image properties and the Image5D_Extensions

plugin demonstrates how to add MacroExtension (Ext) functions that work with the Image5D plugins.

Shannon Stewman (stew@uchicago.edu) has written some code that provides a safe and flexible way for plugins to

directly add macro functions to the macro interpreter. It keeps the encapsulation of the macro internals within the

ij.macro package while allowing these extensions to accept strings, values and arrays as arguments, and to return string

and number values back to passed variables. This helps writing macros for projects where the run(...) facility wouldn't

work very well and the call(...) function feels clunky.

12.1 Using Extensions on the macro side

* Macros that wish to use extensions will first run a plugin that provides these extensions. If the plugin isn't there, the

macro will terminate. The extensions are also local to macros that run the plugin.

 run("ROI Tracker Extensions");

* Extensions are accessed via the 'Ext' namespace. For example:

Ext.roiTracker("show", "track", 5);

* Parameters can be strings, numbers, or arrays. Parameters can also be marked ‘output’, which allows the function to

pass values back via macro variables (a la getCursorLoc).

12.2 Writing a Macro Extension Java plugin

* Plugins register macro extensions via the Functions.registerExtensions() static function. The function takes one

argument: an object that implements the ij.macro.MacroExtension interface. It registers the functions provided by this

extension with a table in the Functions instance attached to the current interpreter (keeping the changes local to the

running macro).

* The MacroExtension interface provides two functions:

19

1. getExtensionFunctions() which returns an array of ExtensionDescriptor objects. These describe the functions and

their argument types.

2. handleExtension(), which is the function that’s called when an extension function is invoked. It takes two

arguments: the name of the extension function, and an array of objects (Object[]) which are the Java-side

parameters.

* ExtensionDescriptor describe a single extension function and are responsible for converting between the macro-side

values (Variable objects) and Java-side values. The goal was to keep function extensions from seeing/using the internals

of the macro system.

1. string values are passed as String objects

2. numeric values are passed as Double objects

3. array values are passed as Object[] objects

Arguments can be marked as 'output', in which case they require a variable to be passed, like getCursorLoc(x,y). Only

string and numeric output variables are supported, and are passed as arrays:

1. string 'output' variables are passed as a 1-element String[] array

2. numeric 'output' variables are passed as a 1-element Double[] array

12.3 Example using the LSM_Toolbox.jar macro extensions

run("Show LSMToolbox","ext");

path = getInfo("image.directory")+File.separator+getInfo("image.filename");

print (path);

xml = Ext.lsmXML(path);

print (xml);

Lambdastamps (Ext.getLStamps(file))

Timestamps (Ext.getTStamps(file))

Z-Stamps (Ext.getZStamps(file))

Events (Ext.getEvents(file));

Opening an lsm file with the toolbox:

Ext.lsmOpen(path);

12.4 Example using the serial_ext.jar macro extensions

// blinks a led

run("arduino ext");

Ext.open("COM1",14400,"DATABITS_8 STOPBITS_2 PARITY_ODD");

Ext.write("LED 1");

wait (1000);

Ext.write("LED 0");

Ext.close();

20

13. RUNNING MACROS FROM THE COMMAND LINE

You can run a macro from the command line and pass a string argument using the -macro or -batch command line

options. As an example, this macro opens an image in the 'images' directory in the users home directory:

 name = getArgument;

 if (name=="") exit ("No argument!");

 path = getDirectory("home")+"images"+File.separator+name;

 setBatchMode(true);

 open(path);

 print(getTitle+": "+getWidth+"x"+getHeight);

Assume it is named 'OpenImage.txt' and it is located in the macros folder. Run the command

 java -jar ij.jar -macro OpenImage blobs.tif

and ImageJ will launch and "blobs.tif: 256x254" is displayed in the Log window. Note that ImageJ assumed the '.txt'

extension and the ImageJ/macros directory. Or run

 java -jar ij.jar -batch OpenImage blobs.tif

and ImageJ does not launch and "blobs.tif: 256x254" is displayed in the terminal

window.

13.1 ImageJ command line options

 "file-name"

 Opens a file

 Example 1: blobs.tif

 Example 2: /Users/wayne/images/blobs.tif

 Example3: e81*.tif

 -ijpath path

 Specifies the path to the directory containing the plugins directory

 Example: -ijpath /Applications/ImageJ

 -port

 Specifies the port used to determine if another instance is running

 Example 1: -port1 (use default port address + 1)

 Example 2: -port2 (use default port address + 2)

 Example 3: -port0 (do not check for another instance)

21

 -macro path [arg]

 Runs a macro or script, passing it an optional argument,

 which can be retrieved using getArgument()

 Example 1: -macro analyze.ijm

 Example 2: -macro analyze /Users/wayne/images/stack1

 -batch path [arg]

 Runs a macro or script in batch (no GUI) mode, passing it an optional

argument.

 ImageJ exits when the macro finishes.

 -eval "macro code"

 Evaluates macro code

 Example 1: -eval "print('Hello, world');"

 Example 2: -eval "return getVersion();"

 -run command

 Runs an ImageJ menu command

 Example: -run "About ImageJ..."

 -debug

 Runs ImageJ in debug mode

14. DEBUGGING MACROS

You can debug a macro using the commands in the Debug menu, which was added to the macro editor in ImageJ 1.42.

You start a debugging session by pressing ctrl-d (Debug Macro). You can then single step through the macro code by

repeatedly pressing ctrl-e (Step).

The following commands are available in the Debug menu:

1. Debug Macro - Starts running the macro in debug mode and opens the "Debug" window, which initially displays

the memory usage, number of open images, and the active image's title. The macro stops running at the first

executable line of code, which is highlighted. Use one of the following commands to continue execution.

2. Step - Executes the highlighted statement and advances to the next. The variable names and values in the "Debug"

window are updated.

3. Trace - Runs the macro, displaying variable names and values in the "Debug" window as they are encountered.

4. Fast Trace - Same as above, but faster.

5. Run - Runs the macro to completion at normal speed.

6. Run to Insertion Point - Runs the macro to a statement that was previously defined by clicking the mouse on an

executable line of code.

7. Abort - Exits the macro.

22

15. A-Z LIST OF ALL BUILT-IN MACRO FUNCTIONS

(version 1.44g)

A

abs(n)

Returns the absolute value of n.

acos(n)

Returns the inverse cosine (in radians) of n.

Array Functions

These functions operate on arrays. They are available in ImageJ 1.42j or later. Refer to the ArrayFunctions macro for

examples.

Array.copy(array) - Returns a copy of array.

Array.fill(array, value) - Assigns the specified numeric value to each element of array.

Array.getStatistics(array, min, max, mean, stdDev) - Returns the min,max, mean, and stdDev of array, which

must contain all numbers.

Array.invert(array) - Inverts the order of the elements in array. Requires 1.43h.

Array.sort(array) - Sorts array, which must contain all numbers or all strings.

Array.trim(array, n) - Returns an array that contains the first n elements of array.

asin(n)

Returns the inverse sine (in radians) of n.

atan(n)
Calculates the inverse tangent (arctangent) of n. Returns a value in the range -PI/2 through PI/2.

atan2(y, x)
Calculates the inverse tangent of y/x and returns an angle in the range -PI to PI, using the signs of the arguments to

determine the quadrant. Multiply the result by 180/PI to convert to degrees.

autoUpdate(boolean)
If boolean is true, the display is refreshed each time lineTo(), drawLine(), drawString(), etc. are called, otherwise, the

display is refreshed only when updateDisplay() is called or when the macro terminates.

B

beep()

Emits an audible beep.

bitDepth()
Returns the bit depth of the active image: 8, 16, 24 (RGB) or 32 (float).

23

C

calibrate(value)
Uses the calibration function of the active image to convert a raw pixel value to a density calibrated value. The argument

must be an integer in the range 0-255 (for 8-bit images) or 0-65535 (for 16-bit images). Returns the same value if the

active image does not have a calibration function.

call("class.method", arg1, arg2, ...)

Calls a public static method in a Java class, passing an arbitrary number of string arguments, and returning a string.

Refer to the CallJavaDemo macro and the ImpProps plugin for examples. Note that the call() function does not work

when ImageJ is running as an unsigned applet.

changeValues(v1, v2, v3)

Changes pixels in the image or selection that have a value in the range v1-v2 to v3. For example, changeValues(0,5,5)

changes all pixels less than 5 to 5, andchangeValues(0x0000ff,0x0000ff,0xff0000) changes all blue pixels in an RGB

image to red.

charCodeAt(string, index)
Returns the Unicode value of the character at the specified index in string. Index values can range from 0 to

lengthOf(string). Use the fromCharCode() function to convert one or more Unicode characters to a string.

close()
Closes the active image. This function has the advantage of not closing the "Log" or "Results" window when you meant

to close the active image. Use run("Close") to close non-image windows.

cos(angle)
Returns the cosine of an angle (in radians).

D

d2s(n, decimalPlaces)
Converts the number n into a string using the specified number of decimal places. Uses scientific notation if

'decimalPlaces is negative. Note that d2s stands for "double to string". Example : d2s(1/3,2) returns the string

"1.33"

Dialog Functions

Dialog.create("Title")
Creates a dialog box with the specified title. Call Dialog.addString(), Dialog.addNumber(), etc. to add

components to the dialog. Call Dialog.show() to display the dialog and Dialog.getString(), Dialog.getNumber(),

etc. to retrieve the values entered by the user. Refer to the DialogDemo macro for an example.

Dialog.addMessage(string) - Adds a message to the dialog. The message can be broken into multiple lines by

inserting new line characters ("\n") into the string.

Dialog.addString("Label", "Initial text") - Adds a text field to the dialog, using the specified label and initial

text.

Dialog.addString("Label", "Initial text", columns) - Adds a text field to the dialog, where columns specifies

the field width in characters.

Dialog.addNumber("Label", default) - Adds a numeric field to the dialog, using the specified label and default

value.

Dialog.addNumber("Label", default, decimalPlaces, columns, units) - Adds a numeric field, using the

specified label and default value. DecimalPlaces specifies the number of digits to right of decimal point,columns

specifies the the field width in characters and units is a string that is displayed to the right of the field.

Dialog.addCheckbox("Label", default) - Adds a checkbox to the dialog, using the specified label and default

state (true or false).

24

Dialog.addCheckboxGroup(rows, columns, labels, defaults) - Adds arowsxcolumns grid of checkboxes to the

dialog, using the specified labels and default states (example). Requires 1.41c.

Dialog.addChoice("Label", items) - Adds a popup menu to the dialog, where items is a string array containing

the menu items.

Dialog.addChoice("Label", items, default) - Adds a popup menu, where items is a string array containing the

choices and default is the default choice.

Dialog.show() - Displays the dialog and waits until the user clicks "OK" or "Cancel". The macro terminates if the

user clicks "Cancel".

Dialog.getString() - Returns a string containing the contents of the next text field.

Dialog.getNumber() - Returns the contents of the next numeric field.

Dialog.getCheckbox() - Returns the state (true or false) of the next checkbox.

Dialog.getChoice() - Returns the selected item (a string) from the next popup menu.

doCommand("Command")
Runs an ImageJ menu command in a separate thread and returns immediately. As an example,

doCommand("Start Animation") starts animating the current stack in a separate thread and the macro

continues to execute. Use run("Start Animation") and the macro hangs until the user stops the

animation.

doWand(x, y)
Equivalent to clicking on the current image at (x,y) with the wand tool. Note that some objects, especially one pixel wide

lines, may not be reliably traced unless they have been thresholded (highlighted in red) using setThreshold.

doWand(x, y, tolerance, mode)
Traces the boundary of the area with pixel values within 'tolerance' of the value of the pixel at (x,y). 'mode' can be "4-

connected", "8-connected" or "Legacy". "Legacy" is for compatibility with previous versions of ImageJ; it is ignored if

'tolerance' > 0.

drawLine(x1, y1, x2, y2)
Draws a line between (x1, y1) and (x2, y2). Use setColor() to specify the color of the line and setLineWidth() to vary the

line width.

drawOval(x, y, width, height)
Draws the outline of an oval using the current color and line width. See also: fillOval,setColor, setLineWidth,

autoUpdate.

drawRect(x, y, width, height)
Draws the outline of a rectangle using the current color and line width. See also: fillRect,setColor, setLineWidth,

autoUpdate.

drawString("text", x, y)
Draws text at the specified location. Call setFont() to specify the font. Call setJustification() to have the text centered or

right justified. Call getStringWidth() to get the width of the text in pixels. Refer to the TextDemo macro for examples.

dump()
Writes the contents of the symbol table, the tokenized macro code and the variable stack to the "Log" window.

E

endsWith(string, suffix)
Returns true (1) if string ends with suffix. See also: startsWith, indexOf, substring, matches.

25

eval(macro)

Evaluates (runs) one or more lines of macro code. An optional second argument can be used to pass a string to the macro

being evaluated. See also: EvalDemo macro and runMacro function.

eval("script", javascript)

Evaluates the JavaScript code contained in the string javascript, for

exampleeval("script","IJ.getInstance().setAlwaysOnTop(true);"). Mac users, and users of Java 1.5, must have a copy of

JavaScript.jar in the plugins folder. Requires 1.41m.

exec(string or strings)
Executes a native command and returns the output of that command as a string. Also opens Web pages in the default

browser and documents in other applications (e.g., Excel). Refer to the ExecExamples macro for examples.

exit() or exit("error message")

Terminates execution of the macro and, optionally, displays an error message.

exp(n)
Returns the exponential number e (i.e., 2.718...) raised to the power of n.

EXT (MACRO EXTENSION) FUNCTIONS

These are functions that have been added to the macro language by plugins using the MacroExtension interface.

The Image5D_Extensions plugin, for example, adds functions that work with Image5D. The Serial Macro

Extensions plugin adds functions, such as Ext.open("COM8",9600,"") and Ext.write("a"), that talk to serial

devices.

F

File Functions

These functions allow you to get information about a file, read or write a text file, create a directory, or to delete,

rename or move a file or directory. The FileDemo macro demonstrates how to use them. See also: getDirectory and

getFileList.

File.append(string, path) - Appends string to the end of the specified file. Requires 1.41j.

File.close(f) - Closes the specified file, which must have been opened using f=File.open()

File.dateLastModified(path) - Returns the date and time the specified file was last modified.

File.delete(path) - Deletes the specified file or directory. With v1.41e or later, returns "1" (true) if the file or

directory was successfully deleted. If the file is a directory, it must be empty. The file must be in the user's home

directory, the ImageJ directory or the temp directory.

File.directory - The directory path of the last file opened using open(), saveAs(), File.open() or

File.openAsString().

File.exists(path) - Returns "1" (true) if the specified file exists.

File.getName(path) - Returns the last name in path's name sequence.

File.getParent(path) - Returns the parent of the file specified by path.

File.isDirectory(path) - Returns "1" (true) if the specified file is a directory.

File.lastModified(path) - Returns the time the specified file was last modified as the number of milliseconds since

January 1, 1970.

File.length(path) - Returns the length in bytes of the specified file.

File.makeDirectory(path) - Creates a directory.

26

File.name - The name of the last file opened using a file open dialog, a file save dialog, drag and drop, or the

open(path) function.

File.nameWithoutExtension - The name of the last file opened with the extension removed. Requires 1.42m.

File.open(path) - Creates a new text file and returns a file variable that refers to it. To write to the file, pass the file

variable to the print function. Displays a file save dialog box if path is an empty string. The file is closed when the

macro exits. Currently, only one file can be open at a time. For an example, refer to the SaveTextFileDemo macro.

File.openAsString(path) - Opens a text file and returns the contents as a string. Displays a file open dialog box if

path is an empty string. Uselines=split(str,"\n") to convert the string to an array of lines.

File.openAsRawString(path) - Opens a file and returns up to the first 5,000 bytes as a string. Returns all the bytes

in the file if the name ends with ".txt". Refer to the First10Bytes and ZapGremlins macros for examples.

File.openAsRawString(path, count) - Opens a file and returns up to the first count bytes as a string.

File.openUrlAsString(url) - Opens a URL and returns the contents as a string. Returns an emptly string if the host

or file cannot be found. With v1.41i and later, returns "<Error: message>" if there any error, including host or file

not found.

File.openDialog(title) - Displays a file open dialog and returns the path to the file choosen by the user (example).

The macro exits if the user cancels the dialog.

File.rename(path1, path2) - Renames, or moves, a file or directory. Returns "1" (true) if successful.

File.saveString(string, path) - Saves string as a file. Requires 1.41j.

File.separator - Returns the file name separator character ("/" or "\").

fill()

Fills the image or selection with the current drawing color.

fillOval(x, y, width, height)
Fills an oval bounded by the specified rectangle with the current drawing color. See also:drawOval, setColor,

autoUpdate.

fillRect(x, y, width, height)
Fills the specified rectangle with the current drawing color. See also: drawRect, setColor,autoUpdate.

Fit Functions

These functions do curve fitting. The CurveFittingDemo macro demonstrates how to use them. Requires 1.41k.

Fit.doFit(equation, xpoints, ypoints) - Fits the specified equation to the points defined by xpoints, ypoints.

Equation can be either the equation name or an index. The equation names are shown in the drop down menu in

theAnalyze>Tools>Curve Fitting window. With ImageJ 1.42f or later,equation can be a string containing a user-

defined equation (example).

Fit.doFit(equation, xpoints, ypoints, initialGuesses) - Fits the specified equation to the points defined by

xpoints, ypoints, using initial parameter values contained in initialGuesses, an array equal in length to the number

of parameters in equation (example).

Fit.rSquared - Returns R^2=1-SSE/SSD, where SSE is the sum of the squares of the errors and SSD is the sum

of the squares of the deviations about the mean.

Fit.p(index) - Returns the value of the specified parameter.

Fit.nParams - Returns the number of parameters.

Fit.f(x) - Returns the y value at x.

Fit.nEquations - Returns the number of equations.

27

Fit.getEquation(index, name, formula) - Gets the name and formula of the specified equation.

Fit.plot - Plots the current curve fit.

Fit.logResults - Causes doFit() to write a description of the curve fitting results to the Log window. Requires

1.42f.

Fit.showDialog - Causes doFit() to display the simplex settings dialog. Requires 1.42f.

floodFill(x, y)

Fills, with the foreground color, pixels that are connected to, and the same color as, the pixel at (x, y). Does 8-connected

filling if there is an optional string argument containing "8", for example floodFill(x, y, "8-connected"). This function is

used to implement the flood fill (paint bucket) macro tool.

floor(n)

Returns the largest value that is not greater than n and is equal to an integer. See also:round.

fromCharCode(value1,...,valueN)
This function takes one or more Unicode values and returns a string.

G

getArgument()
Returns the string argument passed to macros called by runMacro(macro, arg),eval(macro), IJ.runMacro(macro, arg) or

IJ.runMacroFile(path, arg).

getBoolean("message")
Displays a dialog box containing the specified message and "Yes", "No" and "Cancel" buttons. Returns true (1) if the

user clicks "Yes", returns false (0) if the user clicks "No" and exits the macro if the user clicks "Cancel".

getBoundingRect(x, y, width, height)

Replaced by getSelectionBounds.

getCursorLoc(x, y, z, modifiers)
Returns the cursor location in pixels and the mouse event modifier flags. The zcoordinate is zero for 2D images. For

stacks, it is one less than the slice number. For examples, see the GetCursorLocDemo and the GetCursorLocDemoTool

macros.

getDateAndTime(year, month, dayOfWeek, dayOfMonth, hour, minute, second, msec)

Returns the current date and time. Note that 'month' and 'dayOfWeek' are zero-based indexes. For an example, refer to

the GetDateAndTime macro. See also: getTime.

getDimensions(width, height, channels, slices, frames)

Returns the dimensions of the current image.

getDirectory(string)
Displays a "choose directory" dialog and returns the selected directory, or returns the path to a specified directory, such

as "plugins", "home", etc. The returned path ends with a file separator, either "\" (Windows) or "/". Returns an empty

string if the specified directory is not found or aborts the macro if the user cancels the "choose directory" dialog box. For

examples, see the GetDirectoryDemo and ListFilesRecursively macros. See also: getFileList and the File functions.

getDirectory("Choose a Directory") - Displays a file open dialog, using the argument as a title, and returns the path to

the directory selected by the user.

getDirectory("plugins") - Returns the path to the plugins directory.

getDirectory("macros") - Returns the path to the macros directory.

28

getDirectory("luts") - Returns the path to the luts directory.

getDirectory("image") - Returns the path to the directory that the active image was loaded from.

getDirectory("imagej") - Returns the path to the ImageJ directory.

getDirectory("startup") - Returns the path to the directory that ImageJ was launched from.

getDirectory("home") - Returns the path to users home directory.

getDirectory("temp") - Returns the path to the temporary directory (/tmp on Linux and Mac OS X).

getDisplayedArea(x, y, width, height) - Returns the pixel coordinates of the actual displayed area of the image canvas.

For an example, see the Pixel Sampler Tool. Requires 1.44k

.getFileList(directory)

Returns an array containing the names of the files in the specified directory path. The names of subdirectories have a "/"

appended. For an example, see the ListFilesRecursively macro.

getHeight()

Returns the height in pixels of the current image.

getHistogram(values, counts, nBins[, histMin, histMax])
Returns the histogram of the current image or selection. Values is an array that will contain the pixel values for each of

the histogram counts (or the bin starts for 16 and 32 bit images), or set this argument to 0. Counts is an array that will

contain the histogram counts. nBins is the number of bins that will be used. It must be 256 for 8 bit and RGB image, or

an integer greater than zero for 16 and 32 bit images. With 16-bit images, theValues argument is ignored if nBins is

65536. With 16-bit and 32-bit images, the histogram range can be specified using optional histMin and histMax

arguments. See also: getStatistics, HistogramLister, HistogramPlotter, StackHistogramLister andCustomHistogram.

getImageID()
Returns the unique ID (a negative number) of the active image. Use the selectImage(id),isOpen(id) and isActive(id)

functions to activate an image or to determine if it is open or active.

getImageInfo()
Returns a string containing the text that would be displayed by the Image>Show Infocommand. To retrieve the contents

of a text window, use getInfo("window.contents"). For an example, see the ListDicomTags macros. See also:

getMetadata.

getInfo("font.name")
Returns the name of the current font. Requires 1.43f.

getInfo(DICOM_TAG)
Returns the value of a DICOM tag in the form "xxxx,xxxx",

e.g. getInfo("0008,0060"). Returns an empty string if the current image is not a DICOM or if the tag was

not found. Requires 1.43k.

getInfo("image.description")
Returns the TIFF image description tag, or an empty string if this is not a TIFF image or the image description is not

available.

getInfo("image.directory")
Returns the directory that the current image was loaded from, or an empty string if the directory is not available.

Requires 1.43h.

getInfo("image.filename")
Returns the name of the file that the current image was loaded from, or an empty string if the file name is not available.

Requires 1.43h.

getInfo("image.subtitle")

Returns the subtitle of the current image. This is the line of information displayed above the image and below the title

bar.

29

getInfo("log")

Returns the content of the Log window.

getInfo("micrometer.abbreviation")

Returns "µm", the abbreviation for micrometer. Requires 1.43d.

getInfo("overlay")

Returns information about the current image's overlay. Requires 1.43r.

getInfo("selection.name")

Returns the name of the current selection, or "" if there is no selection or the selection does not have a name. The

argument can also be "roi.name". Requires 1.42m.

getInfo("slice.label")

Return the label of the current stack slice. This is the string that appears in parentheses in the subtitle, the line of

information above the image. Returns an empty string if the current image is not a stack or the current slice does not

have a label.

getInfo("window.contents")

If the front window is a text window, returns the contents of that window. If the front window is an image, returns a

string containing the text that would be displayed byImage>Show Info. Note that getImageInfo() is a more reliable way

to retrieve information about an image. Use split(getInfo(),'\n') to break the string returned by this function into separate

lines. Replaces the getInfo() function.

getInfo(key)
Returns the Java property associated with the specified key (e.g., "java.version", "os.name", "user.home", "user.dir",

etc.). Returns an empty string if there is no value associated with the key. See also: getList("java.properties").

getLine(x1, y1, x2, y2, lineWidth)
Returns the starting coordinates, ending coordinates and width of the current straight line selection. The coordinates and

line width are in pixels. Sets x1 = -1 if there is no line selection. Refer to the GetLineDemo macro for an example. See

also: makeLine.

getList("window.titles")
Returns a list (array) of non-image window titles. For an example, see theDisplayWindowTitles macro.

getList("java.properties")
Returns a list (array) of Java property keys. For an example, see the DisplayJavaProperties macro. See also:

getInfo(key).

getLocationAndSize(x, y, width, height)
Returns the location and size, in screen coordinates, of the active image window. Use getWidth and getHeight to get the

width and height, in image coordinates, of the active image. See also: setLocation,

getLut(reds, greens, blues)
Returns three arrays containing the red, green and blue intensity values from the current lookup table. See the

LookupTables macros for examples.

getMetadata("Info")
Returns the metadata (a string) from the "Info" property of the current image. With DICOM images, this is the

information (tags) in the DICOM header. See also: setMetadata. Requires 1.40b.

getMetadata("Label")
Returns the current slice label. The first line of the this label (up to 60 characters) is display as part of the image subtitle.

With DICOM stacks, returns the metadata from the DICOM header. See also: setMetadata. Requires 1.40b.

getMinAndMax(min, max)
Returns the minimum and maximum displayed pixel values (display range). See the DisplayRangeMacros for examples.

getNumber("prompt", defaultValue)
Displays a dialog box and returns the number entered by the user. The first argument is the prompting message and the

second is the value initially displayed in the dialog. Exits the macro if the user clicks on "Cancel" in the dialog. Returns

defaultValue if the user enters an invalid number. See also: Dialog.create.

30

getPixel(x, y)

Returns the value of the pixel at (x,y). Note that pixels in RGB images contain red, green and blue components that need

to be extracted using shifting and masking. See the Color Picker Tool macro for an example that shows how to do this.

Interpolates values if x or y are not integers.

getPixelSize(unit, pixelWidth, pixelHeight)
Returns the unit of length (as a string) and the pixel dimensions. For an example, see the ShowImageInfo macro. See

also: getVoxelSize.

getProfile()
Runs Analyze>Plot Profile (without displaying the plot) and returns the intensity values as an array. For an example, see

the GetProfileExample macro.

getRawStatistics(nPixels, mean, min, max, std, histogram)

This function is similar to getStatistics except that the values returned are uncalibrated and the histogram of 16-bit

images has a bin width of one and is returned as a max+1 element array. For examples, refer to the ShowStatistics macro

set. See also: calibrate and List.setMeasurements

getResult("Column", row)

Returns a measurement from the ImageJ results table or NaN if the specified column is not found. The first argument

specifies a column in the table. It must be a "Results" window column label, such as "Area", "Mean" or "Circ.". The

second argument specifies the row, where 0<=row<nResults. nResults is a predefined variable that contains the current

measurement count. (Actually, it's a built-in function with the "()" optional.) Omit the second argument and the row

defaults to nResults-1 (the last row in the results table). See also: nResults, setResult, isNaN, getResultLabel.

getResultLabel(row)
Returns the label of the specified row in the results table, or an empty string if Display Label is not checked in

Analalyze>Set Measurements.

getSelectionBounds(x, y, width, height)
Returns the smallest rectangle that can completely contain the current selection. x and yare the pixel coordinates of the

upper left corner of the rectangle. width and height are the width and height of the rectangle in pixels. If there is no

selection, returns (0, 0, ImageWidth, ImageHeight). See also: selectionType and setSelectionLocation.

getSelectionCoordinates(xCoordinates, yCoordinates)
Returns two arrays containing the X and Y coordinates, in pixels, of the points that define the current selection. See the

SelectionCoordinates macro for an example. See also: selectionType, getSelectionBounds.

getSliceNumber()
Returns the number of the currently displayed stack image, an integer between 1 andnSlices. Returns 1 if the active

image is not a stack. See also: setSlice.

getStatistics(area, mean, min, max, std, histogram)
Returns the area, average pixel value, minimum pixel value, maximum pixel value, standard deviation of the pixel values

and histogram of the active image or selection. The histogram is returned as a 256 element array. For 8-bit and RGB

images, the histogram bin width is one. For 16-bit and 32-bit images, the bin width is (max-min)/256. For examples,

refer to the ShowStatistics macro set. Note that trailing arguments can be omitted. For example, you can use

getStatistics(area), getStatistics(area, mean) orgetStatistics(area, mean, min, max). See also: getRawStatistics and

List.setMeasurements

getString("prompt", "default")
Displays a dialog box and returns the string entered by the user. The first argument is the prompting message and the

second is the initial string value. Exits the macro if the user clicks on "Cancel" or enters an empty string. See also:

Dialog.create.

getStringWidth(string)
Returns the width in pixels of the specified string. See also: setFont, drawString. Requires v1.41d.

getThreshold(lower, upper)

Returns the lower and upper threshold levels. Both variables are set to -1 if the active image is not thresholded. See also:

setThreshold, getThreshold, resetThreshold.

31

getTime()

Returns the current time in milliseconds. The granularity of the time varies considerably from one platform to the next.

On Windows NT, 2K, XP it is about 10ms. On other Windows versions it can be as poor as 50ms. On many Unix

platforms, including Mac OS X, it actually is 1ms. See also: getDateAndTime.

getTitle()
Returns the title of the current image.

getValue("color.foreground")

Returns the integer value of the current foregound color (example).

getValue("color.background")

Returns the integer value of the current background color.

getValue("font.size")

Returns the size, in points, of the current font. Requires 1.43f.

getValue("font.height")

Returns the height, in pixels, of the current font. Requires 1.43f.

getVoxelSize(width, height, depth, unit)
Returns the voxel size and unit of length ("pixel", "mm", etc.) of the current image or stack. See also: getPixelSize,

setVoxelSize.

getVersion()
Returns the ImageJ version number as a string (e.g., "1.34s"). See also: requires.

getWidth()
Returns the width in pixels of the current image.

getZoom()
Returns the magnification of the active image, a number in the range 0.03125 to 32.0 (3.1% to 3200%).

I

IJ Functions

These functions provide access to miscellaneous methods in ImageJ's IJ class. Requires 1.43l.

IJ.deleteRows(index1, index2) - Deletes rows index1 through index2 in the results table.

IJ.getToolName() - Returns the name of the currently selected tool. See also: setTool.

IJ.freeMemory() - Returns the memory status string (e.g., "2971K of 658MB (<1%)") that is displayed when the

users clicks in the ImageJ status bar.

IJ.currentMemory() - Returns, as a string, the amount of memory in bytes currently used by ImageJ.

IJ.maxMemory() - Returns, as a string, the amount of memory in bytes available to ImageJ. This value (the Java

heap size) is set in the Edit>Options>Memory & Threads dialog box.

IJ.pad(n, length) - Pads 'n' with leading zeros and returns the result (example). Requires 1.45d.

IJ.redirectErrorMessages() - Causes next image opening error to be redirected to the Log window and prevents

the macro from being aborted (example). Requires 1.43n.

IJ.renameResults(title) – Renames the selected window if it is a Results Table. Requires 1.44j. The only active

results table is the one named ‘Results’. If it has been renamed with a different title, a new ‘Results’ table is

created. Use this function to handle multiple results tables.

32

imageCalculator(operator, img1, img2)

Runs the Process>Image Calculator tool, where operator("add","subtract","multiply","divide", "and", "or", "xor",

"min", "max", "average", "difference" or "copy") specifies the operation, and img1 and img2 specify the operands.img1

and img2 can be either an image title (a string) or an image ID (an integer). Theoperator string can include up to three

modifiers: "create" (e.g., "add create") causes the result to be stored in a new window, "32-bit" causes the result to be 32-

bit floating-point and "stack" causes the entire stack to be processed. See the ImageCalculatorDemo macros for

examples.

indexOf(string, substring)

Returns the index within string of the first occurrence of substring. See also:lastIndexOf, startsWith, endsWith,

substring, toLowerCase, replace, matches.

indexOf(string, substring, fromIndex)

Returns the index within string of the first occurrence of substring, with the search starting at fromIndex.

is("animated")

Returns true if the current stack window is being animated.

is("applet")
Returns true if ImageJ is running as an applet.

is("Batch Mode")
Returns true if the macro interpreter is running in batch mode.

is("binary")
Returns true if the current image is binary (8-bit with only 0 and 255 values). Requires v1.42n.

is("Caps Lock Set")
Returns true if the caps lock key is set. Always return false on some platforms. Requires v1.42e.

is("changes")
Returns true if the current image's 'changes' flag is set. Requires v1.42m.

is("composite")
Returns true if the current image is a a multi-channel stack that uses the CompositeImage class.

is("Inverting LUT")
Returns true if the current image is using an inverting lookup table.

is("hyperstack")
Returns true if the current image is a hyperstack.

is("locked")
Returns true if the current image is locked.

is("Virtual Stack")
Returns true if the current image is a virtual stack.

isActive(id)
Returns true if the image with the specified ID is active.

isKeyDown(key)

Returns true if the specified key is pressed, where key must be "shift", "alt" or "space". See also: setKeyDown.

isNaN(n)

Returns true if the value of the number n is NaN (Not-a-Number). A common way to create a NaN is to divide zero by

zero. This function is required because (n==NaN) is always false. Note that the numeric constant NaN is predefined in

the macro language.

isOpen(id)

Returns true if the image with the specified ID is open.

isOpen("Title")
Returns true if the window with the specified title is open.

33

L

lastIndexOf(string, substring)
Returns the index within string of the rightmost occurrence of substring. See also: indexOf, startsWith, endsWith,

substring.

lengthOf(str)

Returns the length of a string or array.

lineTo(x, y)
Draws a line from current location to (x,y) .

List Functions

These functions work with a list of key/value pairs. The ListDemo macro demonstrates how to use them.

Requires 1.41f.

List.set(key, value) - Adds a key/value pair to the list.

List.get(key) - Returns the string value associated with key, or an empty string if the key is not found.

List.getValue(key) - When used in an assignment statement, returns the value associated with key as a number.

Aborts the macro if the value is not a number or the key is not found. Requires v1.42i.

List.size - Returns the size of the list.

List.clear() - Resets the list.

List.setList(list) - Loads the key/value pairs in the string list.

List.getList - Returns the list as a string.

List.setMeasurements - Measures the current image or selection and loads the resulting parameter names (as

keys) and values. All parameters listed in the Analyze>Set Measurements dialog box are measured. Use

List.getValue() in an assignment statement to retrieve the values. See theDrawEllipse macro for an example.

Requires v1.42i.

List.setCommands - Loads the ImageJ menu commands (as keys) and the plugins that implement them (as

values). Requires v1.43f.

log(n)

Returns the natural logarithm (base e) of n. Note that log10(n) = log(n)/log(10).

M

makeLine(x1, y1, x2, y2)

Creates a new straight line selection. The origin (0,0) is assumed to be the upper left corner of the image. Coordinates

are in pixels. You can create segmented line selections by specifying more than two coordinate pairs, for

examplemakeLine(25,34,44,19,69,30,71,56).

makeLine(x1, y1, x2, y2, lineWidth)
Creates a straight line selection with the specified width. See also: getLine.

makeOval(x, y, width, height)

Creates an elliptical selection, where (x,y) define the upper left corner of the bounding rectangle of the ellipse.

makePoint(x, y)

Creates a point selection at the specified location. Create a multi-point selection by

34

usingmakeSelection("point",xpoints,ypoints). Use setKeyDown("shift"); makePoint(x, y); to add a point to an existing

point selection.

makePolygon(x1, y1, x2, y2, x3, y3, ...)

Creates a polygonal selection. At least three coordinate pairs must be specified, but not more than 200. As an example,

makePolygon(20,48,59,13,101,40,75,77,38,70) creates a polygon selection with five sides.

makeRectangle(x, y, width, height)

Creates a rectangular selection. The x and y arguments are the coordinates (in pixels) of the upper left corner of the

selection. The origin (0,0) of the coordinate system is the upper left corner of the image.

makeRectangle(x, y, width, height, arcSize)

Creates a rounded rectangular selection using the specified corner arc size. Requires 1.43n.

makeSelection(type, xcoord, ycoord)

Creates a selection from a list of XY coordinates. The first argument should be "polygon", "freehand", "polyline",

"freeline", "angle" or "point", or the numeric value returned by selectionType. The xcoord and ycoord arguments are

numeric arrays that contain the X and Y coordinates. See the MakeSelectionDemo macro for examples.

makeText(string, x, y)

Creates a text selection at the specified coordinates. The selection will use the font and size specified by the last call to

setFont(). The CreateOverlay macro provides an example. Requires 1.43h.

matches(string, regex)
Returns true if string matches the specified regular expression. See also: startsWith,endsWith, indexOf, replace.

maxOf(n1, n2)
Returns the greater of two values.

minOf(n1, n2)
Returns the smaller of two values.

moveTo(x, y)
Sets the current drawing location. The origin is always assumed to be the upper left corner of the image.

N

newArray(size)
Returns a new array containing size elements. You can also create arrays by listing the elements, for example

newArray(1,4,7) or newArray("a","b","c"). For more examples, see the Arrays macro.

Tip: The ImageJ macro language does not directly support 2D arrays. As a work around, either create a blank image and

use setPixel() and getPixel(), or create a 1D array using a=newArray(xmax*ymax) and do your own indexing (e.g.,

value=a[x+y*xmax]).

newImage(title, type, width, height, depth)
Opens a new image or stack using the name title. The string type should contain "8-bit", "16-bit", "32-bit" or "RGB". In

addition, it can contain "white", "black" or "ramp" (the default is "white"). As an example, use "16-bit ramp" to create a

16-bit image containing a grayscale ramp. Width and height specify the width and height of the image in pixels. Depth

specifies the number of stack slices.

newMenu(macroName, stringArray)
Defines a menu that will be added to the toolbar when the menu tool named macroName is installed. Menu tools are

macros with names ending in "Menu Tool". StringArray is an array containing the menu commands. Returns a copy of

stringArray. For an example, refer to the Toolbar Menus toolset.

nImages

Returns number of open images. The parentheses "()" are optional.

35

nResults

Returns the current measurement counter value. The parentheses "()" are optional.

nSlices

Returns the number of images in the current stack. Returns 1 if the current image is not a stack. The parentheses "()" are

optional. See also: getSliceNumber

O

open(path)

Opens and displays a tiff, dicom, fits, pgm, jpeg, bmp, gif, lut, roi, or text file. Displays an error message and aborts the

macro if the specified file is not in one of the supported formats, or if the file is not found. Displays a file open dialog

box if path is an empty string or if there is no argument. Use the File>Open command with the command recorder

running to generate calls to this function. With 1.41k or later, opens images specified by a URL, for example

open("http://rsb.info.nih.gov/ij/images/clown.gif").

open(path, n)

Opens the nth image in the TIFF stack specified by path. For example, the first image in the stack is opened if n=1 and

the tenth is opened if n=10.

Overlay Functions

Use these functions to create and manage non-destructive graphic overlays. For an example, refer to the

OverlayPolygons macro. See also: setColor, setLineWidth andsetFont. Requires v1.44e.

Overlay.moveTo(x, y)

Sets the current drawing location.

Overlay.lineTo(x, y)

Draws a line from the current location to (x,y) .

Overlay.drawLine(x1, y1, x2, y2)

Draws a line between (x1,y1) and (x2,y2)).

Overlay.add
Adds the drawing created by Overlay.lineTo(), Overlay.drawLine(), etc. to the overlay without updating the

display.

Overlay.setPosition(n)
Sets the stack position (slice number) of the last item added to the overlay

Overlay.drawRect(x, y, width, height)
Draws a rectangle, where (x,y) specifies the upper left corner. Requires 1.44f.

Overlay.drawEllipse(x, y, width, height)
Draws an ellipse, where (x,y) specifies the upper left corner of the bounding rectangle. Requires 1.44f.

Overlay.drawString("text", x, y)

Draws text at the specified location. Call setFont() to specify the font.

Overlay.show

Displays the current overlay.

Overlay.hide

Hides the current overlay.

Overlay.remove

Removes the current overlay.

Overlay.size
Returns the size (selection count) of the current overlay. Returns zero if the image does not have an overlay.

36

Overlay.removeSelection(index)

Removes the specified selection from the overlay.

Overlay.copy

Copies the overlay on the current image to the overlay clipboard. Requires 1.45e.

Overlay.paste

Copies the overlay on the overlay clipboard to the current image. Requires 1.45e.

P

parseFloat(string)

Converts the string argument to a number and returns it. Returns NaN (Not a Number) if the string cannot be converted

into a number. Use the isNaN() function to test for NaN. For examples, see ParseFloatIntExamples.

parseInt(string)

Converts string to an integer and returns it. Returns NaN if the string cannot be converted into a integer.

parseInt(string, radix)
Converts string to an integer and returns it. The optional second argument (radix) specifies the base of the number

contained in the string. The radix must be an integer between 2 and 36. For radixes above 10, the letters of the alphabet

indicate numerals greater than 9. Set radix to 16 to parse hexadecimal numbers. Returns NaN if the string cannot be

converted into a integer. For examples, see ParseFloatIntExamples.

PI
Returns the constant π (3.14159265), the ratio of the circumference to the diameter of a circle.

Plot Functions

These functions create "plot" windows. Plots can be created, data series added, and properties can be set for each

series.

Plot.create("Title", "X-axis Label", "Y-axis Label", xValues, yValues)
Generates a plot using the specified title, axis labels and X and Y coordinate arrays. If only one array is specified

it is assumed to contain the Y values and a 0..n-1 sequence is used as the X values. It is also permissible to

specify no arrays and use Plot.setLimits()and Plot.add() to generate the plot. Use Plot.show() to display the plot in

a window or it will be displayed automatically when the macro exits. For examples, check out the ExamplePlots

macro file.

Plot.setLimits(xMin, xMax, yMin, yMax)
Sets the range of the x-axis and y-axis of plots created using Plot.create(). Must be called immediately after

Plot.create().

Plot.setLineWidth(width)

Specifies the width of the line used to draw a curve. Points (circle, box, etc.) are also drawn larger if a line width

greater than one is specified. Note that the curve specified inPlot.create() is the last one drawn before the plot is

dispayed or updated.

Plot.setColor("red")
Specifies the color used in subsequent calls to Plot.add() or Plot.addText(). The argument can be "black", "blue",

"cyan", "darkGray", "gray", "green", "lightGray", "magenta", "orange", "pink", "red", "white" or "yellow". Note

that the curve specified in Plot.create() is drawn last.

Plot.add("circles", xValues, yValues)
Adds a curve, set of points or error bars to a plot created using Plot.create(). If only one array is specified it is

assumed to contain the Y values and a 0..n-1 sequence is used as the X values. The first argument can be "line",

"circles", "boxes", "triangles", "crosses", "dots", "x" or "error bars".

37

Plot.addText("A line of text", x, y)

Adds text to the plot at the specified location, where (0,0) is the upper left corner of the the plot frame and (1,1) is

the lower right corner. Call Plot.setJustification() to have the text centered or right justified.

Plot.setJustification("center")

Specifies the justification used by Plot.addText(). The argument can be "left", "right" or "center". The default is

"left".

Plot.drawLine(x1, y1, x2, y2)

Draws a line between x1,y1 and x2,y2, using the coordinate system defined byPlot.setLimits(). Requires 1.42k.

Plot.show()

Displays the plot generated by Plot.create(), Plot.add(), etc. in a window. This function is automatically called

when a macro exits.

Plot.update()

Draws the plot generated by Plot.create(), Plot.add(), etc. in an existing plot window. Equivalent to Plot.show() if

no plot window is open.

Plot.getValues(xpoints, ypoints)

Returns the values displayed by clicking on "List" in a plot or histogram window (example). Requires 1.41k.

pow(base, exponent)
Returns the value of base raised to the power of exponent.

print(string)
Outputs a string to the "Log" window. Numeric arguments are automatically converted to strings. The print() function

accepts multiple arguments. For example, you can useprint(x,y,width, height) instead of print(x+" "+y+" "+width+"

"+height). If the first argument is a file handle returned by File.open(path), then the second is saved in the refered file

(see SaveTextFileDemo).

Numeric expressions are automatically converted to strings using four decimal places, or use the d2s function to specify

the decimal places. For example, print(2/3) outputs "0.6667" but print(d2s(2/3,1)) outputs "0.7".

The print() function accepts commands such as "\\Clear", "\\Update:<text>" and"\\Update<n>:<text>" (for n<26) that

clear the "Log" window and update its contents. For example, print("\\Clear") erases the Log window,

print("\\Update:new text")replaces the last line with "new text" and print("\\Update8:new 8th line") replaces the 8th line

with "new 8th line". Refer to the LogWindowTricks macro for an example.

The second argument to print(arg1, arg2) is appended to a text window or table if the first argument is a window title in

brackets, for example print("[My Window]", "Hello, world"). With text windows, newline characters ("\n") are not

automatically appended and text that starts with "\\Update:" replaces the entire contents of the window. Refer to the

PrintToTextWindow, Clock and ProgressBar macros for examples.

The second argument to print(arg1, arg2) is appended to a table (e.g., ResultsTable) if the first argument is the title of the

table in brackets. Use the Plugins>New command to open a blank table. Any command that can be sent to the "Log"

window ("\\Clear","\\Update:<text>" , etc.) can also be sent to a table. Refer to the SineCosineTable2 and TableTricks

macros for examples.

R

random
Returns a random number between 0 and 1.

random("seed", seed)
Sets the seed (a whole number) used by the random() function.

38

rename(name)

Changes the title of the active image to the string name.

replace(string, old, new)

Returns the new string that results from replacing all occurrences of old in string withnew, where old and new are single

character strings. If old or new are longer than one character, each substring of string that matches the regular expression

old is replaced with new. See also: matches.

requires("1.29p")

Display a message and aborts the macro if the ImageJ version is less than the one specified. See also: getVersion.

reset

Restores the backup image created by the snapshot function. Note that reset() and run("Undo") are basically the same, so

only one run() call can be reset.

resetMinAndMax

With 16-bit and 32-bit images, resets the minimum and maximum displayed pixel values (display range) to be the same

as the current image's minimum and maximum pixel values. With 8-bit images, sets the display range to 0-255. With

RGB images, does nothing. See the DisplayRangeMacros for examples.

resetThreshold
Disables thresholding. See also: setThreshold, setAutoThreshold, getThreshold.

restorePreviousTool
Switches back to the previously selected tool. Useful for creating a tool macro thatperforms an action, such as opening a

file, when the user clicks on the tool icon.

restoreSettings
Restores Edit>Options submenu settings saved by the saveSettings function.

Regions Of Interest Manager Functions

These functions address the ROI Manager or selections keeping utility.

roiManager(cmd)
Runs an ROI Manager command, where cmd must be "Add", "Add & Draw", "Update", "Delete", "Deselect",

"Measure", "Draw", "Fill", "Label", "Combine", "Split", "Sort", "Reset" or "Multi Measure". The ROI Manager is

opened if it is not already open. Use roiManager("reset") to delete all items on the list. UsesetOption("Show All",

boolean) to enable/disable "Show All" mode. For examples, refer to the RoiManagerMacros, ROI Manager Stack

Demo and RoiManagerSpeedTestmacros.

roiManager(cmd, name)
Runs an ROI Manager I/O command, where cmd is "Open", "Save or "Rename", andname is a file path or name.

The "Save" option ignores selections and saves all the ROIs as a ZIP archive. It displays a file save dialog if name

is "". You can get the selection name using call("ij.plugin.frame.RoiManager.getName", index). The ROI

Manager is opened if it is not already open.

roiManager("count")
Returns the number of items in the ROI Manager list.

roiManager("index")
Returns the index of the currently selected item on the ROI Manager list, or -1 if the list is empty, no items are

selected, or more than one item is selected.

roiManager("select", index)
Selects an item in the ROI Manager list, where index must be greater than or equal zero and less than the value

returned by roiManager("count"). Note that macros that use this function sometimes run orders of magnitude

faster in batch mode. UseroiManager("deselect") to deselect all items on the list. For an example, refer to the ROI

Manager Stack Demo macro.

39

round(n)

Returns the closest integer to n. See also: floor.

run("command"[, "options"])

Executes an ImageJ menu command. The optional second argument contains values that are automatically entered into

dialog boxes (must be GenericDialog or OpenDialog). Use the Command Recorder (Plugins>Macros>Record) to

generate run() function calls. Use string concatentation to pass a variable as an argument. With ImageJ 1.43 and later,

variables can be passed without using string concatenation by adding "&" to the variable name. For examples, see the

ArgumentPassingDemo macro.

runMacro(name)

Runs the specified macro file, which is assumed to be in the Image macros folder. A full file path may also be used. The

".txt" extension is optional. Returns any string argument returned by the macro. May have an optional second string

argument that is passed to macro. For an example, see the CalculateMean macro. See also: eval and getArgument.

S

save(path)

Saves an image, lookup table, selection or text window to the specified file path. The path must end in ".tif", ".jpg",

".gif", ".zip", ".raw", ".avi", ".bmp", ".fits", ".png", ".pgm", ".lut", ".roi" or ".txt".

saveAs(format, path)
Saves the active image, lookup table, selection, measurement results, selection XY coordinates or text window to the

specified file path. The format argument must be "tiff", "jpeg", "gif", "zip", "raw", "avi", "bmp", "fits", "png", "pgm",

"text image", "lut", "selection", "measurements", "xy Coordinates" or "text". Use saveAs(format) to have a "Save As"

dialog displayed.

saveSettings()
Saves most Edit>Options submenu settings so they can be restored later by callingrestoreSettings.

screenHeight
Returns the screen height in pixels. See also: getLocationAndSize, setLocation.

screenWidth
Returns the screen width in pixels.

selectionContains(x,y)
Returns true if the point x,y is inside the current selection. Aborts the macro if there is no selection. Requires 1.44g..

selectionName
Returns the name of the current selection, or an empty string if the selection does not have a name. Aborts the macro if

there is no selection. See also: setSelectionName andselectionType.

selectionType()

Returns the selection type, where 0=rectangle, 1=oval, 2=polygon, 3=freehand, 4=traced, 5=straight line, 6=segmented

line, 7=freehand line, 8=angle, 9=composite and 10=point. Returns -1 if there is no selection. For an example, see the

ShowImageInfomacro.

selectImage(id)
Activates the image with the specified ID (a negative number). If id is greater than zero, activates the idth image listed in

the Window menu. The id can also be an image title (a string).

selectWindow("name")
Activates the window with the title "name".

setAutoThreshold()
Uses the "Default" method to determine the threshold. It may select dark or bright areas as thresholded, as was the case

with the Image>Adjust>Threshold "Auto" option in ImageJ 1.42o and earlier. See also: setThreshold, getThreshold,

resetThreshold.

setAutoThreshold(method)
Uses the specified method to set the threshold levels of the current image. Use the getList("threshold.methods") function

40

to get a list of the available methods. Concatenate " dark" to the method name if the image has a dark background. For

an example, see theAutoThresholdingDemo macro. Requires 1.42p.

setBackgroundColor(r, g, b)

Sets the background color, where r, g, and b are >= 0 and <= 255. See also: setForegroundColor and

getValue("color.background").

setBatchMode(arg)

If arg is true, the interpreter enters batch mode and images are not displayed, allowing the macro to run up to 20 times

faster. If arg is false, exits batch mode and displays the active image in a window. ImageJ exits batch mode when the

macro terminates if there is no setBatchMode(false) call. Note that a macro should not call setBatchMode(true) more

than once.

Set arg to "exit and display" to exit batch mode and display all open batch mode images. Here are five example batch

mode macros: BatchModeTest, BatchMeasure,BatchSetScale, ReplaceRedWithMagenta.

setColor(r, g, b)
Sets the drawing color, where r, g, and b are >= 0 and <= 255. With 16 and 32 bit images, sets the color to 0 if r=g=b=0.

With 16 and 32 bit images, use setColor(1,0,0) to make the drawing color the same is the minimum displayed pixel

value. SetColor() is faster than setForegroundColor(), and it does not change the system wide foreground color or repaint

the color picker tool icon, but it cannot be used to specify the color used by commands called from macros, for example

run("Fill").

setColor(value)
Sets the drawing color. For 8 bit images, 0<=value<=255. For 16 bit images, 0<=value<=65535. For RGB images, use

hex constants (e.g., 0xff0000 for red). This function does not change the foreground color used by run("Draw") and

run("Fill").

setFont(name, size[, style])
Sets the font used by the drawString function. The first argument is the font name. It should be "SansSerif", "Serif" or

"Monospaced". The second is the point size. The optional third argument is a string containing "bold" or "italic", or both.

The third argument can also contain the keyword "antialiased". For examples, run the TextDemo macro.

setFont("user")
Sets the font to the one defined in the Edit>Options>Fonts window. See also:getInfo("font.name"),

getValue("font.size") and getValue("font.height"). Requires 1.43f.

setForegroundColor(r, g, b)
Sets the foreground color, where r, g, and b are >= 0 and <= 255. See also: setColor,setBackgroundColor and

getValue("color.foreground"),

setJustification("center")
Specifies the justification used by drawString() and Plot.addText(). The argument can be "left", "right" or "center". The

default is "left".

setKeyDown(keys)
Simulates pressing the shift, alt or space keys, where keys is a string containing some combination of "shift", "alt" or

"space". Any key not specified is set "up". UsesetKeyDown("none") to set all keys in the "up" position. Call

setKeyDown("esc") to abort the currently running macro or plugin. For examples, see the

CompositeSelections,DoWandDemo and AbortMacroActionTool macros. See also: isKeyDown.

setLineWidth(width)

Specifies the line width (in pixels) used by drawLine(), lineTo(), drawRect() and drawOval().

setLocation(x, y)
Moves the active window to a new location. See also: getLocationAndSize,screenWidth, screenHeight.

setLocation(x, y, width, height)
Moves and resizes the active image window. The new location of the top-left corner is specified by x and y, and the new

size by width and height.

41

setLut(reds, greens, blues)

Creates a new lookup table and assigns it to the current image. Three input arrays are required, each containing 256

intensity values. See the LookupTables macros for examples.

setMetadata("Info", string)

Assigns the metadata in string to the "Info" image property of the current image. This metadata is displayed by

Image>Show Info and saved as part of the TIFF header. See also: getMetadata. Requires v1.40b.

setMetadata("Label", string)

Sets string as the label of the current image or stack slice. The first 60 characters, or up to the first newline, of the label

are displayed as part of the image subtitle. The labels are saved as part of the TIFF header. See also: getMetadata.

Requires v1.40b.

setMinAndMax(min, max)

Sets the minimum and maximum displayed pixel values (display range). See theDisplayRangeMacros for examples.

setMinAndMax(min, max, channels)
Sets the display range of specified channels in an RGB image, where 4=red, 2=green, 1=blue, 6=red+green, etc. Note

that the pixel data is altered since RGB images, unlike composite color images, do not have a LUT for each channel.

Requires v1.42d.

setOption(option, boolean)
Enables or disables an ImageJ option, where option is one of the following options and boolean is either true or false.

"DisablePopupMenu" enables/disables the the menu displayed when you right click on an image.

"Show All" enables/disables the the "Show All" mode in the ROI Manager.

"Changes" sets/resets the 'changes' flag of the current image. Set this option false to avoid "Save Changes?" dialog boxes

when closing images.

"DebugMode" enables/disables the ImageJ debug mode. ImageJ displays information, such as TIFF tag values, when it

is in debug mode.

"OpenUsingPlugins" controls whether standard file types (TIFF, JPEG, GIF, etc.) are opened by external plugins or by

ImageJ (example).

"QueueMacros" controls whether macros invoked using keyboard shortcuts run sequentially on the event dispatch thread

(EDT) or in separate, possibly concurrent, threads (example). In "QueueMacros" mode, screen updates, which also run

on the EDT, are delayed until the macro finishes. Note that "QueueMacros" does not work with macros using function

key shortcuts in ImageJ 1.41g and earlier.

"DisableUndo" enables/disables the Edit>Undo command. Note that asetOption("DisableUndo",true) call without a

correspondingsetOption("DisableUndo",false) will cause Edit>Undo to not work as expected until ImageJ is restarted.

"Display Label", "Limit to Threshold", "Area", "Mean" and "Std", added in v1.41, enable/disable the corresponding

Analyze>Set Measurementsoptions.

"ShowMin", added in v1.42i, determines whether or not the "Min" value is displayed in the Results window when "Min

& Max Gray Value" is enabled in the Analyze>Set Measurements dialog box.

"BlackBackground", added in v1.43t, enables/disables theProcess>Binary>Options "Black background" option.

"Bicubic" provides a way to force commands like Edit>Selection>Straighten, that normally use bilinear interpolation, to

use bicubic interpolation.

"Loop" enables/disables the Image>Stacks>Tools>Animation Options "Loop back and forth" option. Requires v1.44n

setPasteMode(mode)
Sets the transfer mode used by the Edit>Paste command, where mode is "Copy", "Blend", "Average", "Difference",

"Transparent-white", "Transparent-zero", "AND", "OR", "XOR", "Add", "Subtract", "Multiply", "Divide, "Min" or

"Max". The GetCurrentPasteMode macro demonstrates how to get the current paste mode. In ImageJ 1.42 and later, the

paste mode is saved and restored by the saveSettings and restoreSettings.

42

setPixel(x, y, value)

Stores value at location (x,y) of the current image. The screen is updated when the macro exits or call updateDisplay() to

have it updated immediately.

setResult("Column", row, value)

Adds an entry to the ImageJ results table or modifies an existing entry. The first argument specifies a column in the

table. If the specified column does not exist, it is added. The second argument specifies the row, where

0<=row<=nResults. (nResults is a predefined variable.) A row is added to the table if row=nResults. The third argument

is the value to be added or modified. Call setResult("Label", row, string) to set the row label. Call updateResults() to

display the updated table in the "Results" window. For examples, see the SineCosineTable and ConvexitySolidarity

macros.

setRGBWeights(redWeight, greenWeight, blueWeight)

Sets the weighting factors used by the Analyze>Measure, Image>Type>8-bit andAnalyze>Histogram commands when

they convert RGB pixels values to grayscale. The sum of the weights must be 1.0. Use (1/3,1/3,1/3) for equal weighting

of red, green and blue. The weighting factors in effect when the macro started are restored when it terminates. For

examples, see the MeasureRGB, ExtractRGBChannels andRGB_Histogram macros.

setSelectionLocation(x, y)

Moves the current selection to (x,y), where x and y are the pixel coordinates of the upper left corner of the selection's

bounding rectangle. The RoiManagerMoveSelections macro uses this function to move all the ROI Manager selections a

specified distance. See also: getSelectionBounds.

setSelectionName(name)
Sets the name of the current selection to the specified name. Aborts the macro if there is no selection. See also:

selectionName and selectionType.

setSlice(n)
Displays the nth slice of the active stack. Does nothing if the active image is not a stack. For an example, see the

MeasureStack macros. See also: getSliceNumber, nSlices.

setThreshold(lower, upper)
Sets the lower and upper threshold levels. The values are uncalibrated except for 16-bit images (e.g., unsigned 16-bit

images). There is an optional third argument that can be "red", "black & white", "over/under" or "no color". See also:

setAutoThreshold, getThreshold, resetThreshold.

setTool(name)
Switches to the specified tool, where name is "rectangle", "roundrect", "elliptical", "brush", "polygon", "freehand",

"line", "polyline", "freeline", "arrow", "angle", "point", "multipoint", "wand", "text", "zoom", "hand" or "dropper". Refer

to the SetToolDemo,ToolShortcuts or ToolSwitcher, macros for examples. See also: IJ.getToolName.

setTool(id)
Switches to the specified tool, where 0=rectangle, 1=oval, 2=polygon, 3=freehand, 4=straight line, 5=polyline,

6=freeline, 7=point, 8=wand, 9=text, 10=spare, 11=zoom, 12=hand, 13=dropper, 14=angle, 15...21=spare. See also:

toolID.

setupUndo()
Call this function before drawing on an image to allow the user the option of later restoring the original image using

Edit/Undo. Note that setupUndo() may not work as intended with macros that call the run() function. For an example,

see the DrawingTools tool set.

setVoxelSize(width, height, depth, unit)
Defines the voxel dimensions and unit of length ("pixel", "mm", etc.) for the current image or stack. A "um" unit will be

converted to "µm" (requires v1.43). The depthargument is ignored if the current image is not a stack. See also:

getVoxelSize.

setZCoordinate(z)

Sets the Z coordinate used by getPixel(), setPixel() and changeValues(). The argument must be in the range 0 to n-1,

where n is the number of images in the stack. For an examples, see the Z Profile Plotter Tool.

43

showMessage("message")

Displays "message" in a dialog box.

showMessage("title", "message")

Displays "message" in a dialog box using "title" as the the dialog box title.

showMessageWithCancel(["title",]"message")

Displays "message" in a dialog box with "OK" and "Cancel" buttons. "Title" (optional) is the dialog box title. The macro

exits if the user clicks "Cancel" button. See also:getBoolean.

showProgress(progress)

Updates the ImageJ progress bar, where 0.0<=progress<=1.0. The progress bar is not displayed if the time between the

first and second calls to this function is less than 30 milliseconds. It is erased when the macro terminates or progress is

>=1.0.

showStatus("message")

Displays a message in the ImageJ status bar.

sin(angle)

Returns the sine of an angle (in radians).

snapshot()
Creates a backup copy of the current image that can be later restored using the resetfunction. For examples, see the

ImageRotator and BouncingBar macros.

split(string, delimiters)
Breaks a string into an array of substrings. Delimiters is a string containing one or more delimiter characters. The default

delimiter set " \t\n\r" (space, tab, newline, return) is used if delimiters is an empty string or split is called with only one

argument. Returns a one element array if no delimiter is found.

sqrt(n)
Returns the square root of n. Returns NaN if n is less than zero.

Stack (hyperstack) Functions

These functions allow you to get and set the position (channel, slice and frame) of a hyperstack (a 4D or 5D

stack). The HyperStackDemo demonstrates how to create a hyperstack and how to work with it using these

functions

Stack.isHyperstack - Returns true if the current image is a hyperstack.

Stack.getDimensions(width, height, channels, slices, frames) - Returns the dimensions of the current image.

Stack.setDimensions(channels, slices, frames) - Sets the 3rd, 4th and 5th dimensions of the current stack.

Stack.setChannel(n) - Displays channel n .

Stack.setSlice(n) - Displays slice n .

Stack.setFrame(n) - Displays frame n .

Stack.getPosition(channel, slice, frame) - Returns the current position.

Stack.setPosition(channel, slice, frame) - Sets the position.

Stack.getFrameRate() - Returns the frame rate (FPS).

Stack.setFrameRate(fps) - Sets the frame rate.

Stack.setTUnit(string) - Sets the time unit. Requires v1.42k.

Stack.setZUnit(string) - Sets the Z-dimension unit. Requires v1.42k.

Stack.setDisplayMode(mode) - Sets the display mode, where mode is "composite", "color" or "grayscale".

Requires a multi-channel stack and v1.40a or later.

Stack.getDisplayMode(mode) - Sets the string mode to the current display mode. Requires v1.40a.

44

Stack.setActiveChannels(string) - Sets the active channels in a composite color image, where string is a list of

ones and zeros that specify the channels to activate. For example, "101" activates channels 1 and 3. Requires

v1.41b.

Stack.getActiveChannels(string) - Returns a string that represents the state of the channels in a composite color

image, where '1' indicates an active channel and '0' indicates an inactive channel. Requires v1.43d.

Stack.swap(n1, n2) - Swaps the two specified stack images, where n1 andn2 are integers greater than 0 and less

than or equal to nSlices. Requires v1.40c.

Stack.getStatistics(voxelCount, mean, min, max, stdDev) - Calculates and returns stack statistics. Requires

v1.42m.

startsWith(string, prefix)

Returns true (1) if string starts with prefix. See also: endsWith, indexOf, substring,toLowerCase, matches.

String Functions

These functions do string buffering and copy strings to and from the system clipboard. The

CopyResultsToClipboard macro demonstrates their use. See also: endsWith,indexOf, lastIndexOf, lengthOf,

startsWith and substring.

String.resetBuffer - Resets (clears) the buffer.

String.append(str) - Appends str to the buffer.

String.buffer - Returns the contents of the buffer.

String.copy(str) - Copies str to the clipboard.

String.copyResults - Copies the Results table to the clipboard.

String.paste - Returns the contents of the clipboard.

substring(string, index1, index2)

Returns a new string that is a substring of string. The substring begins at index1 and extends to the character at index2 -

1. See also: indexOf, startsWith, endsWith, replace.

substring(string, index)

Returns a substring of string that begins at index and extends to the end of string. Requires v1.41i.

T

tan(angle)
Returns the tangent of an angle (in radians).

toBinary(number)
Returns a binary string representation of number.

toHex(number)

Returns a hexadecimal string representation of number.

toLowerCase(string)
Returns a new string that is a copy of string with all the characters converted to lower case.

toolID

Returns the ID of the currently selected tool. See also: setTool, IJ.getToolName.

45

toString(number)

Returns a decimal string representation of number. See also: toBinary, toHex, parseFloatand parseInt.

toString(number, decimalPlaces)

Converts number into a string, using the specified number of decimal places.

toUpperCase(string)

Returns a new string that is a copy of string with all the characters converted to upper case.

U

updateDisplay()

Redraws the active image.

updateResults()
Call this function to update the "Results" window after the results table has been modified by calls to the setResult()

function.

W

wait(n)
Delays (sleeps) for n milliseconds.

waitForUser(string)
Halts the macro and displays string in a dialog box. The macro proceeds when the user clicks "OK". Unlike

showMessage, the dialog box is not modal, so the user can, for example, create a selection or adjust the threshold while

the dialog is open. To display a multi-line message, add newline characters ("\n") to string. This function is based on

Michael Schmid's Wait_For_User plugin. Example: WaitForUserDemo.

waitForUser(title, message)
This is a two argument version of waitForUser, where title is the dialog box title and message is the text displayed in the

dialog.

ACKNOWLEDGMENTS

The “ImageJ Macro Language Programmer’s Reference Guide” booklet is compiled and adapted from articles by

various authors, taken from the ImageJ website: http://imagej.nih.gov/ij, the Fiji Wiki: http://pacific.mpi-

cbg.de/wiki/index.php/Fiji, the ImageJ Documentation Wiki: http://imagejdocu.tudor.lu. It aims at providing an up to

date printable manual for the ImageJ macro language. Here is a list of other authors having contributed to this guide:

Vincenzo Della Mea.

